Abstract

The problem of fuzzy clustering of categorical data, where no natural ordering among the elements of a categorical attribute domain can be found, is an important problem in exploratory data analysis. As a result, a few clustering algorithms with focus on categorical data have been proposed. In this paper, a modified differential evolution (DE)-based fuzzy c-medoids (FCMdd) clustering of categorical data has been proposed. The algorithm combines both local as well as global information with adaptive weighting. The performance of the proposed method has been compared with those using genetic algorithm, simulated annealing, and the classical DE technique, besides the FCMdd, fuzzy k-modes, and average linkage hierarchical clustering algorithm for four artificial and four real life categorical data sets. Statistical test has been carried out to establish the statistical significance of the proposed method. To improve the result further, the clustering method is integrated with a support vector machine (SVM), a well-known technique for supervised learning. A fraction of the data points selected from different clusters based on their proximity to the respective medoids is used for training the SVM. The clustering assignments of the remaining points are thereafter determined using the trained classifier. The superiority of the integrated clustering and supervised learning approach has been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.