Abstract

Two-phase microfluidic cooling solutions have the potential to meet the thermal and geometric requirements of high performance microprocessors. However, rapid nucleation and growth of the vapor phase in the micro-scale flow structures produce detrimental rise in the system pressure and create flow instabilities. In our previous work we developed a novel solution to these problems: to locally vent the vapor formed in the microstructures by capping the flow structures with porous, hydrophobic membranes that allow only the trapped vapor phase to escape the system. In this paper we present the results from a visualization study of this venting process in a copper microchannel with a porous hydrophobic Teflon membrane wall and determine the impact of varying flow conditions on the venting process. We tested liquid flow rates of 0.1, 0.25 and 0.5 ml/min with air injection rates varying from 0.2 to 6 ml/min, corresponding to mass qualities of 0.1% to 7%. Bubbly/slug and wavy flows are dominant at the lower liquid and air flow rates, with wavy-stratified and stratified flows becoming dominant at higher air injection rates. At the highest liquid flow rate, plug and annular flows were common. Analysis finds that venting effectiveness is insensitive to Reliq until the point where non-contact flow structures such as annular become dominant and result in a loss of effective venting area. We also find that venting area changes linearly with mass quality and that the maximum venting effectiveness can be improved by increasing the venting area or raising the total static system pressure. However, venting effectiveness is fundamentally limited by the membrane conductance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call