Abstract

As the main challenge for object tracking is to account for drastic appearance change, a hierarchical framework that exploits the strength of both generative and discriminative models is devised in this paper. Our hierarchical framework consists of three appearance models: local-histogram-based model, weighted alignment pooling model, and sparsity-based discriminative model. Sparse representation is adopted in local-histogram-based model layer that considers the spatial information among local patches with a dual-threshold update schema to deal with occlusion. The weighted alignment pooling layer is introduced to weight the local image patches of the candidates after sparse representation. Different from the above two generative methods, the global discriminant model layer employs candidates to sparsely represent positive and negative templates. After that, an effective hierarchical fusion strategy is developed to fuse the three models via their similarities and the confidence. In addition, three reasonable online dictionary and template update strategies are proposed. Finally, experiments on various current popular image sequences demonstrate that our proposed tracker performs favorably against several state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.