Abstract

Developing optical thermometer phosphors with high sensitivity, high signal discriminability and strong fluorescence intensity is ongoing. A dual-emitting thermochromic phosphor, LiScSiO4:Ce3+, Tb3+, was successfully synthesized via solid-state reaction method. The crystal structure, electronic structure, luminescent performance and thermal luminescence behaviors as well as the luminescence mechanism of LiScSiO4:Ce3+, Tb3+ were systematically investigated. Due to the energy transfer and different thermoluminescence behaviors between Ce3+ and Tb3+, high relative sensitivity (2.2% K-1@473K), excellent signal discriminability (5747cm-1), outstanding temperature resolution (0.067K) and good repeatability, as well as efficient emission at high temperatures were achieved based on the fluorescence intensity ratio of Ce3+ and Tb3+, indicating its potential in ratiometric optical thermometer. Moreover, the excellent visualizing thermochromic enable LiScSiO4:Ce3+, Tb3+ to be used as safety sign in variable temperature environment to monitor temperature distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call