Abstract
Virtual Reality (VR) systems are widely used, and it is essential to know if spatial perception in virtual environments (VEs) is similar to reality. Research indicates that users tend to underestimate distances in VR. Prior work suggests that actual distance judgments in VR may not always match the users self-reported preference of where they think they most accurately estimated distances. However, no explicit investigation evaluated whether user preferences match actual performance in a spatial judgment task. We used blind walking to explore potential dissimilarities between actual distance estimates and user-selected preferences of visual complexities, VE conditions, and targets. Our findings show a gap between user preferences and actual performance when visual complexities were varied, which has implications for better visual perception understanding, VR applications design, and research in spatial perception, indicating the need to calibrate and align user preferences and true spatial perception abilities in VR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.