Abstract
It is difficult to investigate the formation process and occurrence states of water in multi-type reservoirs, due to the strong heterogeneity and complex microstructure of the fracture–cavity carbonate gas reservoirs. To date, there is no systematic study on the occurrence characteristics of multi-type formation water, especially through visual observation experiments. In this paper, a new creation method for visual micromodels based on CT scan images and microelectronic photolithography techniques was described. Subsequently, a gas–drive–water visual experiment was conducted to intuitively study the formation mechanism and the occurrence states of formation water. Then, the ImageJ gray analysis method was utilized to quantitatively investigate the gas-water saturation and the proportion of residual water film. Finally, the occurrence characteristics of formation water and its effects on gas seepage flow were comprehensively analyzed. Visual experimental results showed that: the migration processes of natural gas in different types of reservoirs are different; the water in multiple media consists of native movable water and residual water, and residual water is composed of secondary movable water and irreducible water; the residual water mainly occurs in different locations of different reservoirs with the forms of “water film”, “water mass”, “water column” and “water droplets”; the main influencing factors are capillary force, surface tension, displacement pressure and channel connectivity. Quantitative results reflect that the saturation of movable water and residual water are the parameters related directly to reservoir physical properties, pore structure and displacement pressure—the smaller the size of flow channel, the larger the space occupied by water film; the thickness proportion of water film is increasing exponentially with the channel size; the thickness proportion of water film decreases as the increase of displacement pressure; the thickness proportion of water film is essentially constant when the displacement pressure increases to a certain extent. The conducted visual investigation not only improves our intuitive understanding of the occurrence characteristics of formation water, but also provides a theoretical basis for the efficient development of fracture-cavity gas reservoirs.
Highlights
Carbonate reservoirs play a crucial role in the production and world reserves of oil and gas, water, and other mineral resources
In order to quantitatively characterize the visual images at desired times, the distribution of gas–water saturation and the thickness proportion of residual water film under different displacement differential pressure were studied by the ImageJ gray analysis method
Nv where Srw is the saturation of residual water; Aw is the area of water in the micromodel, μm2 ; Av is the area of voids in the micromodel, μm2 ; Nw is the number of water pixels in the micromodel; Nv is the number of void pixels in the micromodel
Summary
Carbonate reservoirs play a crucial role in the production and world reserves of oil and gas, water, and other mineral resources. A number of fracture–cavity carbonate gas reservoirs has been found worldwide and have become an important global natural gas supply resource. They have the characteristics of complex structures, strong heterogeneity, macroscopic development of pore–fracture–pore, and complicated seepage laws [2,3,4,5,6]. These characteristics are different from those of conventional reservoirs, making the occurrence states and seepage characteristics of formation water in multi-type reservoirs complicated
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have