Abstract
Impairment in visual function is common after traumatic brain injury (TBI) in the clinical setting, a phenomenon that translates to pre-clinical animal models as well. In Morris et al. (2021), we reported histological changes following weight-drop-induced TBI in a rodent model including retinal ganglion cell (RGC) loss, decreased electroretinogram (ERG) evoked potential, optic nerve diameter reduction, induced inflammation and gliosis, and loss of myelin accompanied by markedly impaired visual acuity. In this review, we will describe several pre-clinical TBI models that result in injuries to the visual system, indicating that visual function may be impaired following brain injury induced by a number of different injury modalities. This underscores the importance of understanding the role of the visual system and the potential detrimental sequelae to this sensory modality post-TBI. Given that most commonly employed behavioral tests such as the Elevated Plus Maze and Morris Water Maze rely on an intact visual system, interpretation of functional deficits in diffuse models may be confounded by off- target effects on the visual system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.