Abstract

Various highly sensitive and selective analytical methods have been used to monitor metsulfuron-methyl residue in the environment. However, these methods involve costly instruments and complex, time-consuming operations performed in laboratories. Here, a rapid, convenient, and sensitive colorimetric sensor based on anti-aggregation of gold nanoparticles (AuNPs) is demonstrated for the rapid detection of metsulfuron-methyl in agricultural irrigation water. The AuNPs could be induced to aggregate in the presence of melamine and exhibited a distinct color change from wine-red to blue. The aggregation was suppressed by a strong hydrogen-bonding interaction between metsulfuron-methyl and melamine. The differences of the absorbance at 523 nm (ΔA523) and the color change was linearly related to metsulfuron-methyl concentration over the range 0.1–100 mg/L, as observed visually and by UV-vis (Ultraviolet-visible) spectrometry. The detection limit of the sensor was as low as 0.05 mg/L (signal/noise = 3), and was used to determine metsulfuron-methyl in spiked water and in agricultural irrigation water samples. Recoveries were in the range of 71.2–100.4%, suggesting that the colorimetric sensor was suitable for the determination of metsulfuron-methyl in agricultural water samples.

Highlights

  • IntroductionMetsulfuron-methyl is a systemic sulfonylurea pesticide that was introduced in the 1980s and has been widely used to control broad-leaved weeds and grasses in rice, maize, wheat, and barley [1]

  • Metsulfuron-methyl is a systemic sulfonylurea pesticide that was introduced in the 1980s and has been widely used to control broad-leaved weeds and grasses in rice, maize, wheat, and barley [1].Because of its highly efficient herbicidal activity and low mammalian toxicity, metsulfuron-methyl has been applied worldwide [2]

  • These results suggest that the ranged from 71.2–100.4%, and RSDs ranged from 3.81–6.52%

Read more

Summary

Introduction

Metsulfuron-methyl is a systemic sulfonylurea pesticide that was introduced in the 1980s and has been widely used to control broad-leaved weeds and grasses in rice, maize, wheat, and barley [1]. Because of its highly efficient herbicidal activity and low mammalian toxicity, metsulfuron-methyl has been applied worldwide [2]. Its high water solubility, high mobility, and slow degradation may result in contamination of soil, environmental water, and food. Metsulfuron-methyl could bring harm to aquatic plants and animals and the overall ecosystem [3]. It is a great challenging task to monitor metsulfuron-methyl in environmental water and soil [4,5]. A highly sensitive, Sensors 2018, 18, 1595; doi:10.3390/s18051595 www.mdpi.com/journal/sensors

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call