Abstract

Our study was conducted to characterize the retinal structure of the Egyptian fruit bat, Rousettus aegyptiacus to determine the distribution of photoreceptors and melanosomal populations in various retinal zones. Also, we paid attention to the specific structural and functional adaptations related to their nocturnal habits. We analyzed the retinae of 12 adult male Egyptian fruit bats using morphometrical, histological, ultrastructural, and immunoblotting standard techniques. Histological findings revealed that the retinal cells have variations in geometrical architecture and different retinal thickness together with their corresponding layers bearing specific choroidal papillae projecting towards the inner retina. Immunoblotting and ultrastructure results showed that the microstructure of the retina conforms to that pattern found in mammalian species. The retinal photoreceptors are rod-dominant; alternatively, possess two spectral types of cones: SWS and LW/MWS cones as evidence for the basis for dichromatic vision. In addition, the outer retina showed densely-distributed melanin granules with a significant increase in the number of pigment epithelium cells in the eccentric retina. Furthermore, the asymmetric distribution among the retinal quadrants for the visual pigments of both rods and cones coinciding with neuronal cells such as bipolar and ganglion cells confers instructive information about their visual perception and orientation. In conclusion, our findings indicate that R. aegyptiacus efficiently discriminates colors with complex visual adaptations to mediate increased visual acuity coopted for the nocturnal niches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call