Abstract

Unmanned Aerial Vehicles (UAVs) play an increasingly pivotal role in day-to-day rescue operations, offering crucial aerial support in challenging terrain and emergencies, such as drowning. Drone hangars are strategically deployed to ensure swift response in remote locations, overcoming range-limiting constraints posed by battery capacity. However, the UAV's airworthiness, typically ensured through conventional inspections by a technical individual, is paramount to guarantee mission safety. Over time, UAVs are prone to degradation through contact with the external environment, with propellers often being the cause of flight instability and potential crashes. This paper presents an innovative approach to automate UAV propeller inspection to avert incidents preemptively. Leveraging visual recordings and deep learning methodologies, we train a Convolutional Neural Network (CNN) model using both passive and active learning strategies. Our approach successfully detects physical damage on propellers with an impressive accuracy of 85.8%, promising a significant improvement in maintaining UAV flight safety and effectiveness in rescue operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.