Abstract

This paper presents a vision-based navigation strategy for a vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) using a single embedded camera observing natural landmarks. In the proposed approach, images of the environment are first sampled, stored and organized as a set of ordered key images (visual path) which provides a visual memory of the environment. The robot navigation task is then defined as a concatenation of visual path subsets (called visual route) linking the current observed image and a target image belonging to the visual memory. The UAV is controlled to reach each image of the visual route using a vision-based control law adapted to its dynamic model and without explicitly planning any trajectory. This framework is largely substantiated by experiments with an X4-flyer equipped with a fisheye camera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call