Abstract

Small-scale experimental tests were carried out by a bi-disc machine to reproduce the phenomena occurring in shoe-braked railway wheels. Wheel specimens of three different steels were subjected first to a braking step against cast iron brake-block specimens in full sliding condition, then to a running step against a rail steel in rolling-sliding condition. To monitor the damage occurring at the wheel specimen surface, a vision system, based on a high-speed camera acquiring the surface images during the tests, was implemented. An image analysis procedure was elaborated to evaluate the surface state by means of quantitative synthetic indexes. The correlation of such indexes with the damage was validated by means of comparison with the subsurface state, obtained by optical microscope observation of cut specimens. Finally, the synthetic indexes were used to analyse the evolution of the damage on a long-duration test, proving to be effective as a non-destructive damage monitoring tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.