Abstract

Finding a selective and efficient fragmentation process under ambient conditions is pivotal for the generation of fuels and chemical feedstocks from lignoceullosic biomass. In the present study, visible-light and amine-functionalized fullerene-based photocatalyst-promoted photodegradation reactions of dimeric β-O-4 and β-1 lignin model compounds, containing varying numbers of methoxy substituents on the arene ring, were explored to find and develop mild, eco-friendly photochemical techniques for efficient delignification. The results showed that, in contrast to well-known organic photoredox catalysts, amine-functionalized fullerene photocatalyst promoted photochemical reactions of lignin model compounds could lead to more efficient lignin fragmentation reactions through a pathway involving a selective Cα-Cβ bond cleavage process, and in addition, Cα-hydroxyl moiety in lignin model compounds played a significant role in the success of the Cα-Cβ bond cleavage reaction of lignin model substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call