Abstract

Fe-modified TiO(2) nanotube arrays (TiO(2) NTs) were prepared by annealing amorphous TiO(2) NTs whose surface was covered with Fe(3+) by a dip-coating procedure, and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible reflectance spectroscopy. The photoelectrochemical properties were evaluated by the photocurrent response and photoelectrocatalytic (PEC) degradation of methylene orange (MO) and 4-chlorophenol in water under visible-light irradiation (λ > 420 nm). The results showed that a Fe-modified TiO(2) NTs electrode exhibited a larger photocurrent response and higher PEC activity for the degradation of organic pollutants than a pure TiO(2) NTs electrode. At a bias potential of 0.4 V, the photocurrent response of a 0.5 M Fe-modified TiO(2) NTs electrode exceeded that of a pure TiO(2) NTs electrode by a factor of about 10, and the PEC degradation rates of MO and 4-chlorophenol on a 0.5 M Fe-modified TiO(2) NTs electrode exceeded those on a pure TiO(2) NTs electrode by a factor of about 2.5. The larger photocurrent response and higher PEC activity of Fe-modified TiO(2) NTs could be attributed to the enhancement of separation of charge-carriers at the external electric field and the extension of the light response range of TiO(2) to the visible-light region with the narrowing of the band gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call