Abstract
Abstract A new iron tetra(2,3-bis(butylthio)maleonitrile)porphyrazine (FePz(SBu)8) has been synthesized, then it was loaded on H-ZSM-5 zeolite to obtain a supported biomimetic photocatalyst H-ZSM-5/FePz(SBu)8. Using H2O2 as oxidant, the photocatalytic selective oxidation of glucose in water under visible light (λ ≥ 420 nm) irradiation was carried out in presence of H-ZSM-5/FePz(SBu)8. Under such conditions, the glucose can be efficiently converted into value-added chemicals such as glucaric acid, gluconic acid, arabinose, glycerol and formic acid. More importantly, in comparison with pure FePz(SBu)8 and pure H-ZSM-5 zeolite, the H-ZSM-5/FePz(SBu)8 exhibited a higher photocatalytic activity for glucose oxidation and the formation of glucaric acid was observed only when H-ZSM-5/FePz(SBu)8 was used, deriving from the synergistic effect between FePz(SBu)8 and H-ZSM-5 zeolite. Some reaction parameters of glucose oxidation catalyzed by the H-ZSM-5/FePz(SBu)8 were discussed, such as loading amount of FePz(SBu)8, H2O2:glucose ratio, glucose concentration, and so on. It was demonstrated that the Soret-band of FePz(SBu)8 contributed more to the visible light photocatalytic activity than the Q-band during the photocatalytic process. The stability of H-ZSM-5/FePz(SBu)8 during the photocatalytic process was further evaluated by the reusability test. In addition, the generation of reactive oxygen species was determined by electron spin resonance (ESR) technology and scavenger experiments. A possible reaction pathway of glucose oxidation was also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have