Abstract

It is well known that both of the separation efficiency of photogenerated carriers and the response capability to visible light remarkably affect the photocatalytic performance. In the present work, a 3D microsphere of Bi5O7I/BiOCl heterojunction catalyst was synthetised. The synergy of Bi5O7I and BiOCl not only significantly enhances the transfer rate and separation efficiency of carriers, but also heightens light absorption capacity. As-prepared Bi5O7I/BiOCl (40 wt% BiOCl) has a higher degradation efficiency on doxycycline hydrochloride (DC) (90 min, 83.0%) and super high inhibition rate (90 min, 99.92%) on Escherichia coli under visible light, compared to the two monomers. Pollutants DC is finally decomposed into CO2, H2O and small molecule intermediates by generated h+, •OH and •O2−. The effects of reactive radicals follow the order of •OH radicals > h+ radicals ≫ •O2− and e− radicals. The possible structures of intermediates and four possible degradation pathways involved were also discussed. In addition, As-synthetised Bi5O7I/BiOCl has preferable reusability and excellent chemical stability. Biological toxicity experiments also verify that Bi5O7I/BiOCl is a green and environmentally friendly composite material. This strategy provides a green, low-toxic way for the application of traditional type II heterojunction in the fields of environmental remediation and photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.