Abstract

In this study, the complex degradation behavior of natural organic matter (NOM) was explored using photocatalytic oxidation systems with a novel catalyst based on a hybrid composite of zinc-bismuth oxides and g-C3N4 (ZBO-CN). The photooxidation system demonstrated the effective removal of NOM under low-intensity visible light irradiation, presenting removal rates of 53–74% and 65–88% on the basis of dissolved organic carbon (DOC) and the UV absorption coefficient (UV254), respectively, at 1.5 g/L of the catalyst. The NOM removal showed an increasing trend with a higher ZBO-CN dose. Comparative experiments with the hole and OH radical scavengers revealed that the direct oxidation occurring on the catalyst's surface might be the governing photocatalytic mechanism. Fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC) revealed the individual removal behavior of the different constituents in bulk NOM. Different tendencies towards preferential adsorption and subsequent oxidative removal were found among dissimilar fluorescent components within a bulk terrestrial NOM, following the order of terrestrial humic-like (C1) > humic-like (C2) > microbial humic-like (C3) components. The result suggests the dominant operation of π-π and/or hydrophobic interactions between the NOM and the catalyst. The discriminative removal behavior was more pronounced in visible light versus UV-activated systems, probably due to the incapability of visible light to excite è - h+ pairs of ZnO and the triplet state of NOM. The high photoactivity and structural stability of ZBO-CN under visible light implies its potential for an effective, low-cost and energy-saving treatment technology to selectively remove large sized humic-like substances from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call