Abstract
To optimize the ultraviolet (UV) water disinfection process, it is crucial to determine the ideal geometric dimensions of a corresponding model that enhance performance while minimizing the impact of uncertain photoreactor inputs. As water treatment directly affects people's lives, it is crucial to eliminate the risks associated with the non-ideal performance of disinfection photoreactors. Input uncertainties greatly affect photoreactor performance, making it essential to develop a robust optimization algorithm in advance to mitigate these effects and minimize the physical and financial resources required for constructing the photoreactors. In the suggested algorithm, a two-objective genetic algorithm is integrated with a non-intrusive polynomial chaos expansion (PCE) technique. Additionally, the Sobol sampling method is employed to select the necessary samples for understanding the system's behavior. An artificial neural network surrogate model is trained using sufficient data points derived from computational fluid dynamics (CFD) simulations. A novel type of UV photoreactors working based on exterior reflectors is chosen to optimize the process with three uncertain input parameters, including UV lamp power, UV transmittance of water, and diffusive fraction of the reflective surface. In addition, four geometrical design variables are considered to find the optimal configuration of the photoreactor. The standard deviation (SD) and the reciprocal of log reduction value (LRV) are set as the objective functions, calculated using PCE. The optimal design provides a LRV of 3.95 with SD of 0.2. The coefficient of variation (CoV) of the model significantly declines up to 7%, indicating the decreased sensitivity of the photoreactor to the input uncertainties. Additionally, it is discovered that the robust model exhibits minimal sensitivity to changes in reflectivity in various flow rates, and its output variability aligns with the SD obtained through robust optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.