Abstract

A visible light spectral domain optical coherence microscopy system operating in the wavelength range of 450-680 nm was developed. The resulting large wavelength range of 230 nm enabled an ultrahigh axial resolution of 0.88μm in tissue. The setup consisted of a Michelson interferometer combined with a homemade spectrometer with a spectral resolution of 0.03 nm. Scanning of 1 x 1 mm2 and 0.5 x 0.5 mm2 areas was performed by an integrated microelectromechanical mirror. After scanning the light beam is focused onto the tissue by a commercial objective with a 10 x magnification, resulting in a transverse resolution of 2 μm . Specification measurements showed that a -89 dB sensitivity with a 24 dB/mm roll-off could be achieved with the system. First of all the capabilities of the system were tested by investigating millimeter paper, tape and the USAF (US Air Force) 1951 resolution test target. Finally cerebral tissues from non-pathological and Alzheimer's disease affected brains were investigated. The results showed that structures, such as white and gray matter, could be distinguished. Furthermore a first effort was made to differentiate Alzheimer's disease from healthy brain tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.