Abstract
Titanium dioxide (TiO2) semiconductor photocatalysts were photosensitized to the visible spectrum with gold nanospheres (AuNSs) and gold nanorods (AuNRs) to study the ethanol photo-oxidation cycle, with an emphasis toward driving carbon–carbon (C–C) bond cleavage at low temperatures. The photocatalysts exhibited a localized surface plasmon resonance (SPR) that was harnessed to drive the complete photo-oxidation of formic acid (FA) and ethanol (EtOH) via augmented carrier generation/separation and photothermal conversion. Contributions of transverse and longitudinal localized SPR modes were decoupled by irradiating AuNSs–TiO2 and AuNRs–TiO2 with targeted wavelength ranges to probe their effects on plasmonically assisted photocatalytic oxidation of FA and EtOH. Photocatalytic performance was assessed by monitoring the yield of gaseous products during photo-oxidation experiments using a gas chromatography–mass spectrometry–multiple headspace extraction (GC–MS–MHE) analysis method. The complete oxidation of E...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have