Abstract

Modification with rare-earth (RE) metals has emerged as an important approach for enhancing the properties of titanium dioxide. Herein, the visible-light photocatalytic activity of RE-TiO2 (RE: Tm, Er, Nd, Dy, Lu, La, Ho, Pr, Tb, Sc, Ce, Yb, Sm, Gd, Y, or Eu) was investigated using a combination of computer simulations and experimental techniques. The RE-TiO2 photocatalysts were characterised using advanced experimental techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, luminescence, diffuse reflectance spectroscopy, and specific surface area measurements. Furthermore, a quantitative structure–activity relationship analysis was conducted by applying a partial least-squares machine learning algorithm. The Ho-TiO2 sample exhibited the highest photocatalytic activity under visible-light irradiation. Notably, the observed activity was not due to an up-conversion process, originating instead from slight bandgap narrowing caused by new sub-bandgap states from the RE 4 f levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.