Abstract

N-doped TiO2 powders were prepared by two different sol–gel methods. Samples were characterised by X-ray diffraction (XRD), BET specific surface area measurements (SSA), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Electron Paramagnetic Resonance (EPR). XPS measurements revealed a signal at 400eV assignable to nitrogen in the form of TiNO. EPR signals are attributed to molecular NO trapped with cavities/defects possibly interacting with oxygen vacancies. The photocatalytic activity under UV and visible light was determined following the abatement of NOx and the photodegradation of 2-propanol in gas–solid systems. N-doped TiO2 showed a higher activity compared with the pristine commercial and home prepared samples under visible light irradiation. A good photoactivity in the abatement of both NOx and 2-propanol is also observed for mechanical dispersions of N-TiO2 in CaCO3 serving as a model in view of perspective application in photocatalytically active construction and architectural materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call