Abstract
Visible light-driven photocatalyst BiFeO3 (BFO) nanoparticles were synthesised by the auto-combustion method. The honey was used to fuel the auto combustion method to synthesise the BFO nanoparticles. The structural, optical and morphological activities of the bismuth loaded BFO nanoparticles were characterised by X-ray diffraction (XRD), FTIR, UV, photoluminescence (PL) and SEM analysis, respectively. The bismuth content modifies the lattice parameters of XRD and reduces the bandgap energy. The observed crystallite size varies from 19 to 27 nm and the bandgap region is 2.07 to 2.21 eV. The photo-charge carriers increased upon the BFO nanoparticles and their emission at 587 nm in the visible region of the PL spectrum. The 2% bismuth loaded BFO nanoparticles showed better morphology than 0% and 5% bismuth loaded BFO nanoparticles. The oxidation state of BFO nanoparticles and their binding energies were characterised by X-ray Photoelectron Spectroscopy (XPS) analysis. The methylene blue dye (MB) degradation against 2% BFO nanoparticles showed enhanced catalytic activity (81%) than the remaining samples of BFO nanoparticles. The bacterial activity of BFO nanoparticles was assessed against Gram-positive and Gram-negative bacteria, including S. aureus and E. coli. 2% Excess bismuth BFO nanoparticles exhibit better antibacterial activity. Comparatively, 2% Excess bismuth BFO nanoparticles derived an outstanding crystallinity, charge separation, and reduced bandgap activities. Based on these findings, BFO nanoparticles may be applicable in drug delivery and water remediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.