Abstract
This work reports on graphitic carbon nitride (C3N4) modified with silver to investigate its visible-light-driven photocatalysis for decomposition of micropollutants in wastewater. Various characterization methods were conducted to examine the physico-chemical properties of Ag-doped C3N4 (Ag–C3N4) photocatalyst. The results from structural, morphological, and surface chemical analysis indicated that C3N4 was successfully doped with Ag. Photoluminescence and transient photocurrent density studies revealed that the recombination rate of electron-hole pairs was reduced, leading to the enhancement of photocatalytic activities of the photocatalyst. Ag–C3N4 showed high photocatalytic performance for photodegradation of our target micropollutant, bisphenol A (BA). It could completely remove BA in 1 h with kinetic constant 6.2 times higher than that of the undoped C3N4 photocatalyst. Recycling test and the assessment of the photocatalyst in wastewater further confirmed the excellent stability and applicability of the Ag–C3N4 photocatalyst. This work could provide a new solution to the practical application of photocatalyts for the degradation of micropollutants in wastewater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have