Abstract
A visible-light-driven Minisci protocol that employs an inexpensive earth-abundant metal catalyst, decacarbonyldimanganese Mn2 (CO)10 , to generate alkyl radicals from alkyl iodides has been developed. This Minisci protocol is compatible with a wide array of sensitive functional groups, including oxetanes, sugar moieties, azetidines, tert-butyl carbamates (Boc-group), cyclobutanes, and spirocycles. The robustness of this protocol is demonstrated on the late-stage functionalization of complex nitrogen-containing drugs. Photophysical and DFT studies indicate a light-initiated chain reaction mechanism propagated by . Mn(CO)5 . The rate-limiting step is the iodine abstraction from an alkyl iodide by . Mn(CO)5 .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have