Abstract

We report on the visible-light-driven photocatalytic activity of highly stable β-indium sulfide (In2S3) quantum dots embedded in Nafion matrix. β-indium sulfide (In2S3) quantum dots (6–10 nm) embedded in Nafion matrix with strong quantum confinement were synthesized by a simple chemical route. The UV–Vis absorption spectrum shows a large blue shift (∼1 eV) which can be controlled by the reaction temperature and time. Strong broadband photoluminescence is observed in the blue, green and red regions of the emission spectrum with variation in particle size and stoichiometry of the quantum dots. Photocatalytic activity measurements show that these hybrid membranes synthesized with equimolar precursors of In and S show paramount photocatalytic activity under visible-light irradiation, with the degradation of Rhodamine-6G dyes up to 95% within 90 min. The photocatalytic membranes are tested for reusable and stable operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.