Abstract
In this study, nanoporous carbon (NPC) decorated V2O5 (NPC/V2O5) nanocomposite synthesized by a hydrothermal technique using biomass-derived NPC nanoflakes towards the application of berberine hydrochloride (BH) dye degradation under visible light irradiation. The prepared samples were characterized by X-ray Diffraction (XRD), Raman spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX), UV–Visible and Photoluminescence (PL) spectroscopy. Charge transfer resistance was measured by electrochemical impedance spectroscopy (EIS) and liner sweep voltammetry (LSV). XRD studies confirm the orthorhombic crystal structure of NPC/V2O5 nanocomposite. FE-SEM and TEM analysis validate their particle-like and sheet-like morphology of V2O5 and NPC respectively. Further, UV–visible DRS and PL spectra of the green synthesized NPC/V2O5 nanocomposite exhibited a low band-gap and reduced recombination rate compared to the pure counterpart which is better light-absorbing ability in the visible light region. Batch experiments represent the incorporation of NPC and V2O5 would lead to an increase the photocatalytic performance of NPC/V2O5 toward BH dye degradation. During the photocatalytic reaction, the NPC/V2O5 nanocomposite degraded rate around 97.7 % against BH dye within 80 min while pure V2O5 degraded 92.5 % of BH dye under same visible light irradiation time. Finally, the cyclic stability experiment exhibits the photocatalyst even stable after five consecutive tests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have