Abstract

Olefin metathesis is now one of the most efficient ways to create new carbon-carbon bonds. While most efforts focused on the development of ever-more efficient catalysts, a particular attention has recently been devoted to developing latent metathesis catalysts, inactive species that need an external stimulus to become active. This furnishes an increased control over the reaction which is crucial for applications in materials science. Here, we report our work on the development of a new system to achieve visible-light-controlled metathesis by merging olefin metathesis and photoredox catalysis. The combination of a ruthenium metathesis catalyst bearing two N-heterocyclic carbenes with an oxidizing pyrylium photocatalyst affords excellent temporal and spatial resolution using only visible light as stimulus. Applications of this system in synthesis, as well as in polymer patterning and photolithography with spatially resolved ring-opening metathesis polymerization, are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.