Abstract

Photocatalysis is a prominent tool for the application of environmental remediation with tremendous potential. Catalyst is immobilised onto the surface of a natural organic polymer presents a number of additional advantages including low-cost, high catalytic activity and extensive potential for reuse. The wide range of applications of natural biopolymer-chitosan for pharmaceutical, biomedical and industrial activities. In the present work, TiO2-chitosan composite was prepared by chemical method and calcinated at 540 o C. It was characterized by UV-Visible spectroscopy, UV- DRS spectroscopy, X-ray diffraction (XRD), Fourier Transformed Infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Textile reactive dye Methylene Blue was used as a model pollutant to study the photocatalytic activity of the TiO2-chitosan composite under visible light irradiation. The kinetics of photocatalytic decolourization was found to follow a pseudofirst-order according to Langmiur–Hinshelwood (L–H) model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.