Abstract
We report a spatially resolved spectroscopic study of the visible chemiluminescence emission from different premixed ammonia-air-oxygen flames stabilized on a laminar flat flame burner, with equivalence ratio ranging from 0.7 to 1.35 and an O2/N2 ratio of 0.4. In the reaction zone of the observed flames, the visible emission was recognized to be the chemiluminescence of excited NH2* radicals, while in the post-flame zone, two types of chemiluminescence were observed: NO2* chemiluminescence dominated in the fuel-lean flames and NH2* chemiluminescence dominated in the fuel-rich flames. The high-resolution spectra of the NO2* and NH2* chemiluminescence in the visible region (400-700 nm) were recorded. The intensity of both spectra increased gradually with wavelength. However, the NO2*-chemiluminescence spectrum appeared to be continuous and unstructured, while the NH2*-chemiluminescence spectrum consisted of groups of distinct emission lines. Based on the spectral feature, the ratios of the integrated chemiluminescence intensities over the 598-603 nm wavelength range to the intensities over the 586-592 nm range and 447-453 nm range were used to sense equivalence ratio. In addition, slightly different colors of the fuel-lean and fuel-rich flames were observed, due to the fact that NO2* chemiluminescence had a relatively stronger signal in the blue region than NH2* chemiluminescence. The difference was used to infer flame equivalence ratio using the flame images recorded by a RGB digital camera, where the ratio of the signal from the red channel to the signal from the blue channel was calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.