Abstract

The surfaces of the Martian moons, Phobos and Deimos may offer a stable environment for long-term operation of platforms. We present a broad assessment of potential scientific investigations, as well as strategic and operational opportunities offered by long-term operation of an instrumented lander. Studies using observations of Mars’ moons, and the detailed new findings expected from the JAXA Martian Moons eXploration (MMX) mission, International Mars Sample Return (MSR) Campaign and other upcoming Mars missions, provide a driver for feasibility and trade studies for follow-on missions that would build on the knowledge gain from those missions. We discuss the scientific questions and operational objectives that may be pertinent for landed platforms on the martian moons, including (1) monitoring and scientific investigations of Mars’ surface and atmosphere, (2) scientific investigations of the martian moons, (3) monitoring and scientific investigations of the space environment, (4) data relay for Mars surface assets or interplanetary missions and 5) use in a Mars navigation/positioning system. We present results from visibility calculations performed using the SPICE observation geometry system for space science missions, and a Phobos shape model. We compute as a function of location on Phobos, visibility quantities that are most relevant to science and operational objectives. These include visibility from Phobos of the Sun, Earth, Mars surface and atmosphere, Deimos, and Jupiter. We also consider occultation events by the Mars atmosphere of Earth and Deimos that may provide opportunities for radio science. Calculations are performed for a study period spanning one Mars year in a hypothetical future operational scenario (1 Jan 2030–18 Nov 2031). We combine visibility metrics to identify locations on Phobos most suitable for long-term operation of a platform. We find the Mars-facing side of Phobos, and limited areas on the leading and trailing sides, satisfy the most requirements defined for Mars and Phobos science, space environment monitoring, and data relay/navigation. We demonstrate that compliance with requirements related to visibility of Mars and its atmosphere are not mutually exclusive with those that are better satisfied on Phobos’ anti-Mars side, such as those aided by maximizing their cumulative view factor to the ecliptic plane (i.e. visibility to the Sun, Earth or outer solar system). Finally, our methodology allows to assess the extent to which combined visibility metrics can meet mission requirements. The process we describe can be used to support landing site identification and selection on planets, moons and small bodies.Graphical

Highlights

  • Study of the martian moons has persisted since the first images of Phobos and Deimos by Mariner 9 in 1971 (Pollack et al 1972) and despite enduring study of their characteristics for many decades, from their origin to the grooves on Phobos surface, major questions remain regarding our scientific understanding of the two moons

  • We calculate the number of hours per day, averaged over the study period, for which Phobos sees the centre of Mars (Fig. 5)

  • Using a shape model of Phobos, by performing visibility calculations in a relevant time period, we have assessed the extent to which locations on the surface of Phobos meet science and operations requirements identified for a long-term surface platform

Read more

Summary

Introduction

Study of the martian moons has persisted since the first images of Phobos and Deimos by Mariner 9 in 1971 (Pollack et al 1972) and despite enduring study of their characteristics for many decades, from their origin to the grooves on Phobos surface, major questions remain regarding our scientific understanding of the two moons. The dearth of paths to answer these questions has prompted significant lobby from the science community for study of the moons, leading to proposals to space agencies for missions. To address this clear scientific priority JAXA’s Martian Moons eXploration (MMX) mission will characterise Phobos and Deimos and their environment in detail, and will return a sample from Phobos (Usui et al 2020) for analysis in terrestrial laboratories to help determine the moons’ origin and answer other high priority questions in Mars and solar system science. A suitable operational phase for such a mission could commence in the 2030s, following the successful completion of the MMX mission, and return of Phobos material to Earth in 2029

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.