Abstract

Photoinduced magnetization dynamics is investigated in chemically ordered (LaMnO3)2n/(SrMnO3)n superlattices using the time-resolved magneto-optic Kerr effect. A monotonic frequency-field dependence is observed for the n=1 superlattice, indicating a single spin population consistent with a homogeneous hole distribution. In contrast, for n> or =2 superlattices, a large precession frequency is observed at low fields indicating the presence of an exchange torque in the dynamic regime. We attribute the emergence of exchange torque to the coupling between two spin populations-viscous and fast spins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.