Abstract

Experimental results showing significant reductions from classical in the Rayleigh-Taylor instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at approximately 1 Mbar peak pressures, while maintaining the sample in the solid state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the Rayleigh-Taylor instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.