Abstract

In this paper, we investigate the asymptotic validity of boundary-layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl’s boundary-layer solution to Navier-Stokes solutions with different Reynolds numbers. We show how Prandtl’s solution develops a finite-time separation singularity. On the other hand, the Navier-Stokes solutions are characterized by the presence of two distinct types of viscous-inviscid interactions that can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover, we apply the complex singularity-tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.