Abstract
Euler and Navier-Stokes solutions of the supersonic shear flow past a circular cylinder are obtained. These solutions are used to study the basic flow structure around the cylinder. Both the inviscid and viscous calculations show the formation of a large recirculating flow region around the front stagnation point. The calculations further show that the overall size of the recirculating region is approximately the same for the Euler and Navier-Stokes solutions but the inside structure is quite different. The inviscid flow shows only one vortex whereas the viscous flow shows two vortices inside the recirculating flow region. The inner vortex in the Navier-Stokes solution is formed primarily due to the viscous effects near the body surface and its size depends upon the Reynolds number. It is found that with increasing Reynolds number, the inner vortex diminishes in size and the Navier-Stokes solution asymptotically approaches the Euler solution. These results indicate that the Euler equations may correctly predict certain high Reynolds number separation phenomenon in flows with natural inviscid vorticity source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.