Abstract

Viscous fluid flow near the line of intersection of curved surfaces at large Re numbers is a topic of considerable interest. The intersection of two fixed planes has been the subject of many experimental and theoretical studies. This case is characterized by very small transverse velocities and by the fact that the corner does not affect the remoter parts of the flow [1–4]. The flows near intersecting curved surfaces have received very little attention, except for the particular case of the intersection of a concave cylindrical surface and a plane in an incompressible fluid flow. With reference to this example it has been shown that the curvature qualitatively affects the flow pattern not only near the line of intersection but also at a distance from it [5]. The present article is concerned with viscous fluid flow at Re≫1 near the line of intersection of arbitrary, relatively smooth surfaces in the presence of external body forces and, moreover, in the noninertial coordinate system moving with the exposed surfaces (for example, rotating surfaces). On the basis of an analysis of the Navier-Stokes equations and the energy equation as Re→∞ sufficient conditions are obtained for the development of intense transverse flows near the line of intersection, which also lead to a qualitative change in the flow pattern; it is shown that depending on the external forces and the geometric parameters of the surfaces various types of flow are possible; the relations determining the occurrence of a particular type of flow and the equations and necessary boundary conditions describing some of these flows are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call