Abstract
In this paper, we report a study on the viscous extended holographic Ricci dark energy (EHRDE) model under the assumption of existence of bulk viscosity in the linear barotropic fluid and the EHRDE in the framework of standard Eckart theory of relativistic irreversible thermodynamics and it has been observed that the non-equilibrium bulk viscous pressure is significantly smaller than the local equilibrium pressure. We have studied the equation of state (EoS) parameter and observed that the EoS behaves like “quintom” and is consistent with the constraints set by observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements in [S. Kumar and L. Xu, Phys. Lett. B 737, 244 (2014)]. Analysis of statefinder parameters has shown the possibility of attainment of Lambda cold dark matter ([Formula: see text]CDM) phase under current model and at the same time it has been pointed out that the redshift z = 0, i.e. the current universe, the statefinder pair is different from that of [Formula: see text]CDM and the [Formula: see text]CDM can be attained in a later stage of the universe. An analysis of stability has shown that although the viscous EHRDE along with viscous barotropic is classically unstable in the present epoch, it can lead to a stable universe in very late stage. Considering an universe enveloped by event horizon, we have observed validity of generalized second law (GSL) of thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.