Abstract
The present paper reports a study on modified Chaplygin gas (MCG)-based reconstruction scheme for extended holographic Ricci dark energy (EHRDE) in the presence of viscous type dissipative term. The dissipative effect has been described by using Eckart approach. Under the assumption that the universe is filled with MCG–EHRDE under the influence of bulk viscosity we have studied the cosmological dynamics, where the bulk viscosity coefficient has been chosen in a particular time varying form [Formula: see text], where [Formula: see text] and [Formula: see text] are constant coefficients and [Formula: see text] is the Hubble parameter. Furthermore, we have reconstructed the potential and dynamics of viscous MCG–EHRDE as scalar field. Thereafter we have studied the statefinder trajectories to discern its departure from [Formula: see text] cold dark matter ([Formula: see text]CDM) and finally investigated validity of the generalized second law (GSL) of thermodynamics considering event horizon as the enveloping horizon of the universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.