Abstract
To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Four-dimensional flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n = 12, age = 37 ± 10 yr), patients with aortic dilation (n = 16, age = 52 ± 8 yr), and patients with aortic valve stenosis matched for age and aortic size (n = 14, age = 46 ± 15 yr), using a relationship between the three-dimensional velocity field and viscous energy dissipation. Viscous energy loss was elevated significantly in the thoracic aorta in patients with dilated aorta (3.6 ± 1.3 mW, P = 0.024) and patients with aortic stenosis (14.3 ± 8.2 mW, P < 0.001) compared with healthy volunteers (2.3 ± 0.9 mW). The same pattern of significant differences was seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2 ± 1.1 mW, P = 0.021) and patients with aortic stenosis (10.9 ± 6.8 mW, P < 0.001) were elevated compared with healthy volunteers (1.2 ± 0.6 mW). This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.