Abstract

<p style='text-indent:20px;'>In this paper, we study the Dirichlet problem of the inhomogeneous infinity Laplace equation with strong absorptions:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} \ \ \Delta_{\infty}u(x)-\lambda(x)(u(x))^{\gamma}_+ = f(x), \ &{\rm{in}}\ \Omega, \\ \ \ u(x) = \phi(x), \ &{\rm{on}}\ \partial\Omega, \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \gamma\in(0, 3). $\end{document}</tex-math></inline-formula> We first prove the existence and uniqueness of the viscosity solution to the Dirichlet problem. Then, under additional structure conditions on <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula>, we establish the <inline-formula><tex-math id="M3">\begin{document}$ C^{\frac{4}{3-\gamma}} $\end{document}</tex-math></inline-formula> regularity of the viscosity solution across the free boundary and the non-degeneracy. Based on the comparison principle, we also obtain the stability result, that is the viscosity solution of the Dirichlet problem converges uniformly to the solution to the corresponding Dirichlet problem of the homogeneous equation when the inhomogeneous term converges uniformly to <inline-formula><tex-math id="M4">\begin{document}$ 0. $\end{document}</tex-math></inline-formula></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.