Abstract
We study regularity properties of solutions to reaction-diffusion equations ruled by the infinity laplacian operator. We focus our analysis in models presenting plateaus, i.e. regions where a non-negative solution vanishes identically. We obtain sharp geometric regularity estimates for solutions along the boundary of plateaus sets. In particular we show that the $(n-\epsilon)$-Hausdorff measure of the plateaus boundary is finite, for a universal number $\epsilon>0$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.