Abstract

This work presents a different perspective on viscosity and a new interpretation of it by treating the fluid as a fractal lattice incorporating temporary molecular clusters (t-clusters) and using the thermodynamic dimension (DT) idea. The DT connects fluid viscosity to its EoS by computing the effective intermolecular potential, U(r, T), which may be found via thermodynamic relations from the fluid equation of state (EoS). Finally, a general viscosity equation is developed utilizing standard and well-established statistical thermodynamic relations. The approach is applied to nitrogen fluid as a case study because of the fluid's extensiveness data in the literature. Less than 2 % is the absolute average deviation percent (AAD%) for viscosity prediction in the range of 65 K to 1000 K for pressures less than 2000 MPa. It is simple to code the viscosity equation that is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call