Abstract

This paper reports experimental investigation on the viscosity, electrical and thermal conductivities of ethylene glycol and propylene glycol based β-SiC nanofluids. Two-step technique was used to formulate stable nanofluids at room temperature. The properties of nanofluids were measured at temperatures between 298.15 K and 353.15 K for different concentrations up to 3.0 wt.% loading (1.0 vol.%). The effect of temperature and base liquid was analysed on each of nanofluid sample. The experimental results showed that both electrical and thermal conductivity increase while viscosity decreases with temperature. The properties of the base liquid are found to influence the nanofluid properties. The underlying mechanisms have been established and discussed. Furthermore, some new empirical equations are derived to correlate the measured properties data. The results can be applied to predict the viscosity, electrical and thermal conductivities of ethylene glycol and propylene glycol-based β-SiC nanofluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.