Abstract

A persistent dream in lead-free Sn–Ag–Cu solder community is to attain both high strength and ductility for the design and reliability of soldered joints. Microalloying Te or Co has been anticipated to modify the low Ag-content Sn–1.7Ag–0.7Cu solders in different aspects. This research investigates the effect of minor additions of Te and Co on the development of solidified microstructure, thermal and tensile properties of Sn–1.7Ag–0.7Cu solders alloys. It is seen that trace amount of Te addition (0.2 wt%) results in the formation of SnTe intermetallic (IMC) and increasing eutectic microstructure, whereas a minor amount of Co (0.5 wt%) is completely changed the solidification mode. Microalloying Co refines the Cu6Sn5 and Ag3Sn particles and leads to formation of more stripe-like (Cu, Co)6Sn5 morphology together with Co3Sn. These effects were significantly enhanced both the high strength by ~ 16% and ductility by ~ 72% at 110 °C, respectively, which play a vital role in drop impact implementation development. Moreover, Te or Co-microalloying could severely modify the growth restriction factor of SAC177 solder and markedly reduce the degree of undercooling of SAC177 from 17.8 to 11.6 and 2.6 °C, respectively. The utility of this research was demonstrated by design of lead-free micro-joints that simultaneously exhibit high-reliability with low cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call