Abstract

In the stretch/blow molding process of poly(ethylene terephthalate) (PET) bottles, various parameters such as displacement of the stretch rod, inflation pressure, and polymer temperature distribution, have to be adjusted in order to improve the process. An axisymmetric numerical simulation code has been developed using a volumic approach. The numerical model is based on an updated-Lagrangian finite element method together with a penalty treatment of mass conservation. An automatic remeshing technique has been used. In addition, a decoupled technique has been developed in order to compute the viscoelastic constitutive equation. Successful stretch/blow molding simulations have been performed and compared to experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.