Abstract

Ultrasound elastography has been widely used to measure liver stiffness. However, the accuracy of liver viscoelasticity obtained by ultrasound elastography has not been well established. To assess the accuracy of ultrasound elastography for measuring liver viscoelasticity and compare to conventional rheometry methods. In addition, to determine if combining these two methods could delineate the rheological behavior of liver over a wide range of frequencies. The phase velocities of shear waves were measured in livers over a frequency range from 100 to 400 Hz using the ultrasound elastography method of shearwave dispersion ultrasound vibrometry (SDUV), while the complex shear moduli were obtained by rheometry over a frequency range of 1 to 30 Hz. Three rheological models, Maxwell, Voigt, and Zener, were fit to the measured data obtained from the two separate methods and from the combination of the two methods. The elasticity measured by SDUV was in good agreement with that of rheometry. However, the viscosity measured by SDUV was significantly different from that of rheometry. The results indicate that the high frequency components of the dispersive data play a much more important role in determining the dispersive pattern or the viscous value than the low frequency components. It was found that the Maxwell model is not as appropriate as the Voigt and Zener models for describing the rheological behavior of liver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.