Abstract

BackgroundThe knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints.At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the bovine knee joint. Such changes were determined at frequencies associated with normal and rapid heel-strike rise times.MethodsCartilage on bone, obtained from bovine knee joints, was tested using dynamic mechanical analysis (DMA). DMA was performed at a range of frequencies between 1 and 88 Hz (i.e. relevant to normal and rapid heel-strike rise times). Viscoelastic stiffness of cartilage from the tibial plateau, femoral condyles and patellar groove were compared.ResultsFor all samples the storage stiffness increased, but the loss stiffness remained constant, with frequency. They were also dependent on cartilage thickness. Both the loss stiffness and the storage stiffness decreased with cartilage thickness. Femoral condyles had the thinnest cartilage but had the highest storage and loss stiffness. Tibial plateau cartilage not covered by the meniscus had the thickest cartilage and lowest storage and loss stiffness.ConclusionDifferences in regional thickness of knee joint cartilage correspond to altered frequency-dependent, viscoelastic stiffness.

Highlights

  • The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints

  • Lateral and medial cartilage At 1 Hz the only significant difference in viscoelastic stiffness between comparable lateral and medial cartilage was limited to the tibial plateau

  • The lateral tibial plateau cartilage, that is covered by the meniscus, had a significantly greater loss stiffness than the corresponding medial cartilage (Table 1)

Read more

Summary

Introduction

The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the bovine knee joint. Such changes were determined at frequencies associated with normal and rapid heel-strike rise times. Measurements were taken from distinct knee joint regions This has provided a range of viscoelastic stiffness for healthy knee joints over normal and rapid loading frequencies. A subset of the population with heel-strike rise times from 5 to 25 ms have been identified as being predisposed to OA [2]. The timing of these heel-strikes correspond to loading frequencies of 3–5 Hz for normal and up to 90 Hz for rapid heel-strike rise times [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.