Abstract
The author was a professional engineer working in the fields of the space shuttle, naval battleships, nuclear power plant, computer hardware and software, artificial intelligence, and semiconductor chips. After retiring from his work, he initiated self-study and research on internal medicine with an emphasis on biomarker relationship exploration and disease prevention. Since 2010, he has utilized these disciplines learned from 7 different universities along with various work experiences to formulate his current medical research work during the past 13 years. One thing he has learned is that in engineering or medicine, we are frequently seeking answers, illustrations, or explanations for the relationships between the input variable (force applied on a structure or cause of a disease) and output variable (deformation of a structure or symptom of a disease). However, the multiple relationships between input and output could be expressed with many different matrix formats of 1 x 1, 1 x n, m x 1, or m x n (m or n means different multiple variables). In addition to these described mathematical complications, the output resulting from one or more inputs can also become an input of another output, i.e. a symptom of certain causes can become a cause of another different symptom. This phenomenon is a complex scenario with “chain effects”. In fact, engineering and biomedical complications are fundamentally mathematical problems that correlate or conform with many inherent physical laws or principles. Over the past 13 years, in his medical research work, he has encountered more than 100 different sets of biomarkers with almost equal amounts of cause/input variables versus symptom/output variables. For example, food and exercise influence both body weight and glucose lev el, where persistent high glucose can result in diabetes. When diabetes combines with hypertension (high blood pressure) and hyperlipidemia (high blood lipids), it can cause cardiovascular diseases. Furthermore, obesity and diabetes are also linked with various kinds of cancers. These multiple sets of biomedical input versus output have been researched by the author using different tools he has learned from academic fields of mathematics, physics, computer science, and engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have