Abstract
Abstract Viscoelastic fluids are of great importance in many industrial sectors, such as in food and synthetic polymers industries. The rheological response of viscoelastic fluids is quite complex, including combination of viscous and elastic effects and non-linear phenomena. This work presents a numerical methodology based on the split-stress tensor approach and the concept of equilibrium stress tensor to treat high Weissenberg number problems using any differential constitutive equations. The proposed methodology was implemented in a new computational fluid dynamics (CFD) tool and consists of a viscoelastic fluid module included in the OpenFOAM, a flexible open source CFD package. Oldroyd-B/UCM, Giesekus, Phan-Thien–Tanner (PTT), Finitely Extensible Nonlinear Elastic (FENE-P and FENE-CR), and Pom–Pom based constitutive equations were implemented, in single and multimode forms. The proposed methodology was evaluated by comparing its predictions with experimental and numerical data from the literature for the analysis of a planar 4:1 contraction flow, showing to be stable and efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.