Abstract
We present a method for estimating the 3D visual hull of an object from a known class given a single silhouette or sequence of silhouettes observed from an unknown viewpoint. A non-parametric density model of object shape is learned for the given object class by collecting multi-view silhouette examples from calibrated, though possibly varied, camera rigs. To infer a 3D shape from a single input silhouette, we search for 3D shapes which maximize the posterior given the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The most likely visual hull for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have